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Experimental contributions currently play an important role in determining hydraulic
forces due to cavitation. Up to the present date, there is no computational analysis which
has proven to be successful in this domain. Experiments are usually carried out to measure
the resulting internal forces in a model because these forces are crucial for designing
elements under cavitational flows. This paper presents a numerical approach using the
theory of rotordynamics coupled with the finite element method (FEM) to determine the
hydraulic load on a rotor from the internal forces measured in a cross-section of the rotor.
Once the load is found, a program developed can be used to compute the internal forces
in any cross-section of interest and to evaluate dynamic effects on the rotor. Two illustrative
examples are presented to show the validity of this approach.
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1. INTRODUCTION

A model of a future hydrogen pump has been developed at the Société Européenne de
Propulsion (SEP). This is a multi-stage pump whose first stage, called the inducer, is an
axial compressor which plays a prominent part in the overall efficiency of the engine in
which the pump is installed. The inducer has been designed to endure cavitational flows.

In the scope of the research on this pump, the SEP has entrusted the Centre de
Recherches et d’Essais de Machines Hydrauliques de Grenoble (CREMHyG) with the
investigation of non-stationary forces generated by the cavitational fluid on the inducer.
The current theories are inadequate to describe properly these time-dependent hydraulic
loads, especially when the flow rate changes. Therefore, measurements of the forces on a
model give the most reliable results [1, 2].

Experiments have been carried out at CREMHyG to measure the six components of
internal forces (see Figure 1) in a cross-section of the pump rotor (see Figure 2). These
internal forces are axial force (Ny ), shear forces (Tx , Tz ), torque (My ) and bending
moments (Mx , Mz ). The measurements as well as the spectral analyses of the measured
outputs were addressed in references [3] and [4].

This paper presents an FEM dynamic formulation and its numerical implementation for
determining the asynchronous hydraulic load on the inducer from the internal forces
measured in a cross-section of the rotor. To this end, first of all, a mathematical
relationship between these two kinds of forces needs to be derived. Then, the load
determination follows from an identification between experimental data and computed
solutions.
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Figure 1. Internal forces (xz: cross-section plane, y: rotor axis).

Numerical results are presented for two illustrative examples. Finally, based on the
developed mathematical relationship between internal and external forces, the effects of
dynamic factors on the rotor behaviour are studied.

2. ANALYSIS OF TIME-DEPENDENT INTERNAL FORCES IN A ROTOR

2.1.          

Consider a rotor turning with an angular velocity v and subjected to an asynchronous
rotating force {F} of angular velocity V=2pf, where f is the force frequency. The focus
here is on the shear forces and bending moments since the experiments performed have
shown that Ny and My are mostly static. In this case the external force under consideration
should be a radial force. Let G be its intersection point with the rotor axis. The rotor is
modelled by using (N−1) shaft-beam finite elements. The global co-ordinate system XYZ
is centered at G and each finite element is associated with a local Cartesian co-ordinate
system xyz where Y and y coincide with the rotor axis as shown in Figure 3.

The nodal displacement component vectors of an element (i) can be written in its local
co-ordinate system as follows

{du (t)}= �ui (t), ci (t), ui+1(t), ci+1(t)�T, {dw (t)}= �wi (t), ui (t), wi+1(t), ui+1(t)�T, (1)

where t is time, ui , wi , ui+1, wi+1 are deflections in the x and z directions at nodes (i) and
(i+1), respectively, and ci , ui , ci+1, ui+1 are slopes about the x and z directions at nodes
(i) and (i+1), respectively.

Figure 2. Rotor and its finite element mesh.
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Figure 3. Global and local axes.

The familiar displacement shape functions for shaft-beam elements are

u(y, t)= a1 + a2y+ a3y2 + a4y3, w(y, t)= a5 + a6y+ a7y2 + a8y3, (2)

in which the unknown coefficients a1, . . . , a8 can be described in terms of the nodal
displacements (1) by solving the following boundary condition equations (L is the length
of element (i)):

u(0, t)= ui (t), w(0, t)=wi (t), u(L, t)= ui+1(t), w(L, t)=wi+1(t),

c(0, t)= 1u/1y =y=0 =ci (t), u(0, t)= 1w/1y =y=0 = ui (t),

c(L, t)= 1u/1y =y=L =ci+1(t), u(L, t)= 1w/1y =y=L = ui+1(t). (3)

Thus equations (2) can now be rewritten in matrix form as

u(y, t)= {N1(y)}T{du (t)}, w(y, t)= {N2(y)}T{dw (t)}, (4)

where the shape vectors {N1(y)} and {N2(y)} are

{N1(y)}=W1−
3y2

L2 +
2y3

L3 , −y+
2y2

L
−

y3

L2,
3y2

L2 −
2y3

L3 ,
y2

L
−

y3

L2w
T

,

{N2(y)}=W1−
3y2

L2 +
2y3

L3 , y−
2y2

L
+

y3

L2,
3y2

L2 −
2y3

L3 , −
y2

L
+

y3

L2w
T

.

(5)

It should be recalled that there are two theories for modelling of a beam at rest (v=0)
(see references [5] or [6], for example): Timoshenko beam theory includes rotatory inertia
about the x- and z-axes (Rayleigh effect) and shear effect, whereas Bernoulli–Euler beam
theory does not take these effects into account. Furthermore, since rotors are rotating
beams, these two theories can also be employed for rotor modelling provided that the
rotatory inertia about rotor axis (Y-axis) and the gyroscopic (Coriolis) effect are included
in the models. The Timoshenko model is general and thus it is appropriate in most
engineering problems. However this theory requires complex computations.

For a long beam where the beam diameter is much smaller than its length, it is valid
to ignore the shear and Rayleigh effects. The present work considers the rotor under
consideration (shown in Figure 2) as a long beam, so Bernoulli–Euler beam theory is
employed here.
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In this case, the bending moments and shear forces in element (i) are written as (see
reference [7] for example)

Mx (y, t)=EI 12w/1y2 =EI{N02 (y)}T{dw (t)},

Mz (y, t)=−EI 12u/1y2 =−EI{N01 (y)}T{du (t)}, (6)

Tz (y, t)=−EI 13w/1y3 =−EI{N12 (y)}T{dw (t)},

Tx (y, t)=EI 13u/1y3 =EI{N11 (y)}T{du (t)}, (7)

where E and I are the Young’s modulus of the material and cross-sectional moment of
inertia, respectively. In equations (6) and (7) the rotatory inertia about the rotor axis and
the gyroscopic effect are included by using the appropriate nodal displacement vectors
{du (t)} and {dw (t)}. This is shown in detail in section 2.2.

The internal forces of interest are at node (i) since this node is associated with the
cross-section where the measurements are taken. The expressions for the bending moments
and shear forces at node (i) where y=0 can be derived easily from equations (6) and (7)
to yield

Mxi (t)=Mx (0, t)=EI{N02 (0)}T{dw (t)}, Mzi (t)=Mz (0, t)=−EI{N01 (0)}T{du (t)},

Tzi (t)=Tz (0, t)=−EI{N12 (0)}T{dw (t)}, Txi (t)=Tx (0, t)=EI{N11 (0)}T{du (t)}. (8)

The components in equations (8) are generated by the action of the asynchronous force
{F}. Thus, in order to obtain these terms, the vectors {du (t)} and {dw (t)} need to be
determined from the corresponding dynamic equations of the rotor.

2.2. 

It is assumed that at t=0 the asynchronous load {F} is an angle a with respect to the
X-axis. The load components in X and Z directions are

6FX

FZ7=6 Fa cos (Vt+ a)
−Fa sin (Vt+ a)7=6 Fc

−Fs7 cos (Vt)+6−Fs

−Fc7 sin (Vt), (9)

in which, Fa is the amplitude of the load, Fc =Fa cos a and Fs =Fa sin a.
A simpler form of equation (9) is

{F}= {F1} cos (Vt)+ {F2} sin (Vt). (10)

By denoting {F�1} and {F�2} as the extensions of {F1} and {F2} over the whole structure,
and letting

{d}= �u1(t), w1(t), u1(t), c1(t), . . . , uN (t), wN (t), uN (t), cN (t)�T, (11)

then the differential equations of rotor motion are given in matrix form by [8]

([M]+ [Ms ]){d� }+([A]+v[C]){d� }+[K]{d}= {F�1} cos (Vt)+ {F�2} sin (Vt). (12)

In equation (12), [M], [Ms ], [A], [C], [K] are, respectively, classical mass, secondary mass,
damping, Coriolis and stiffness matrices (global matrices) which are found by assembling
the corresponding element matrices of all the structural components of the rotor. It should
be noted that [Ms] and [C] give, respectively, the influence of the secondary effect of
rotatory inertia about rotor axis and the gyroscopic effect [8].
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Here, the system (12) is solved by using the code ROTOR developed at Laboratoire de
Mécanique des Structures (INSA de Lyon), and the response {d} is obtained in the form

{d}= {D1} cos (Vt)+ {D2} sin (Vt) (13)

where

{D1}= �D1u1, D1w1, D1u1, D1c1, . . . , D1uN , D1wN , D1uN , D1cN�T,

{D2}= �D2u1, D2w1, D2u1, D2c1, . . . , D2uN , D2wN , D2uN , D2cN�T. (14)

This response {d} takes the effect of rotatory inertia about rotor axis and the gyroscopic
effect into account as mentioned above since the terms [Ms ] and v[C] are included in
equation (12).

Substituting {du (t)} and {dw (t)} derived from equations (14) into equations (8) yields

Mki (t)=Mki1 cos (Vt)+Mki2 sin (Vt)=M�ki cos (Vt+ bMk ),

Tki (t)=Tki1 cos (Vt)+Tki2 sin (Vt)=T�ki cos (Vt+ bTk ), (15)

in which,

M�ki =zM2
ki1 +M2

ki2, T�ki =zT2
ki1 +T2

ki2,

tan (bMk )=−Mki2/Mki1, tan (bTk )=−Tki2/Tki1, k0 x, z, (16)

and,

Mxij =(2EI/L)(−(3/L)Djw1 −2Dju1 + (3/L)Djw2 −Dju2),

Mzij =(2EI/L)((3/L)Dju1 −2Djc1 − (3/L)Dju2 −Djc2),

Tzij =(6EI/L2)(−(2/L)Djw1 −Dju1 + (2/L)Djw2 −Dju2),

Txij =(6EI/L2)((2/L)Dju1 −Djc1 − (2/L)Dju2 −Djc2), j=1, 2. (17)

It can be seen from equations (15) that the resulting bending moments and shear forces
have the same V (i.e., the same frequency f ) as the asynchronous load {F}.

3. DETERMINATION OF THE HYDRAULIC LOAD

3.1.     

Consider an experiment which is carried out by decreasing the suction pressure p at a
fixed angular velocity of the rotor (v=7500 r.p.m.) and at a nominal flow rate. In this
case, when the pressure is lower than a certain threshold, cavitational flow is generated
and the measurement of the internal forces is taken. Spectral analysis is then employed
to evaluate the variation of these measured forces which can now be described as

Q(t)=
Q0

2
+ s

a

n=1

Qn cos (2pfnt+8n ), (18)

where Q(t) denotes the measured internal forces, Q0 is amplitude of the static component,
and Qn , fn and 8n are, respectively, amplitude, frequency and phase of nth time-dependent
component.

Q0, Qn and fn can be determined from response spectra of these measured signals. For
example, Figure 4 shows response spectra of the bending moment Mx measured from the
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Figure 4. Response spectra of the bending moment Mx .

above experiment. Since only three important spectra are observed from this figure,
equation (18) in this case can be written as

Mx (t)1
Mx0

2
+ s

2

n=1

Mxn cos (2pfnt+8Mn ). (19)

Numerical analyses are performed for all six internal forces. The results given in Tables 1
and 2 are two examples which correspond to two different suction pressures.

3.2. 

An identification between the numerical analysis and the experimental results needs to
be done to determine the hydraulic load from the measured internal forces. It can be seen
that there is no problem identifying the load components corresponding to Ny and My

which are time-independent as shown in Tables 1 and 2. So the task is how to determine

T 1

Spectral analysis results for pressure p=0·961 bar

n fn (Hz) Myn (Nm) Nyn (N) Mxn (Nm) Mzn (Nm) Txn (N) Tzn (N)

0 0 656 47625 −27·3 8·2 67·3 −57·5
1 86 0·0 0·0 10·8 12·2 198·1 180·4
2 141 0·0 0·0 76·5 72·6 1456·6 1462·5

T 2

Spectral analysis results for pressure p=0·655 bar

n fn (Hz) Myn (Nm) Nyn (N) Mxn (Nm) Mzn (Nm) Txn (N) Tzn (N)

0 0 654 47475 20·0 23·5 −65·1 24·3
1 125 0·0 0·0 76·4 75·4 2005·2 2041·5
2 250 0·0 0·0 3·2 4·4 55·5 50·6
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T 3

Computed results for pressure p=0·961 bar

n fn (Hz) Dln (mm) Fn (N) M�xn (Nm) M�zn (Nm) T�xn (N) T�zn (N)

1 86 0·1 170 8·8 9·2 201·1 191·0
2 141 1·2 1000 64·4 78·4 1736·3 1472·8

the radial load which results in the time-dependent internal forces Mx , Mz , Tx and Tz

presented in these tables.
As discussed before, the internal forces have the same frequency f as the external load.

It follows that each time-dependent set (Mxn , Mzn , Txn , Tzn ) of frequency fn q 0 Hz (see
Tables 1 and 2) can be associated with a load component of the same fn and is determined
by using equations (15). The key is to choose, for each fn , an amplitude Fn (used in
equations (9)) of the load component and its application point so that the computed set
(M�xin , M�zin , T�xin , T�zin ) given by (15) and the measured set (Mxn , Mzn , Txn , Tzn ) are matched
as closely as possible.

To this end, two subroutines used with the code ROTOR have been developed [9] in
order to compute the internal forces (15) from a given asynchronous load.

Finally, an approximation expression for the hydraulic radial load can be written as

FX (t)1Tx0

2
+ s

2

n=1

Fn cos (2pfnt+ an ), FZ (t)1Tz0

2
+ s

2

n=1

Fn sin (2pfnt+ an ). (20)

The computed numerical results are reported in Tables 3 and 4, in which Dln is the
eccentricity between the center of gravity of the inducer blades (see Figure 2) and the
application point of the load component found at the frequency fn .

The determined load components of amplitude Fn result in the computed internal forces
(M�xin , M�zin , T�xin , T�zin ) shown in Tables 3 and 4. It is quite remarkable that these results are
in good agreement with those measured (Tables 1 and 2).

4. EFFECTS OF DYNAMIC FACTORS ON THE INTERNAL FORCES

It can be seen that the success of the approach presented in this work depends on the
accuracies of rotor modelling and the measured internal forces. The identification in
section 3.2 can thus be used as a reference to verify these accuracies. Once a well matched
identification is found, the rotor model can then be employed to evaluate effects of dynamic
factors such as v and V on the resulting amplitude of the time-dependent internal forces.

As an example, an asynchronous load of form (9) has been studied. Figure 5 shows the
effects of v and V on the ratios Tz /Fa and Mx /Ma where Ma =Falm and Fa =1000 N. The
fact that both Tz /Fa and Mx /Ma increase with the growth of V is not surprising. However,
it can be noted that v has almost no influence on the shear force whereas its effect is more
important on the bending moment. The last point may be explained by the ‘‘stiffening’’
effect due to the gyroscopic effect provoked by the ‘‘flywheels’’.

T 4

Computed results for pressure p=0·655 bar

n fn (Hz) Dln (mm) Fn (N) M�xn (Nm) M�zn (Nm) T�xn (N) T�zn (N)

1 125 8·2 1400 71·9 81·8 2124·2 1865·8
2 250 20·0 30 4·7 1·9 43·0 82·1
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Figure 5. Dynamic effects of v (r.p.m.) and V (r.p.m.) on Tz (v, V)/Fa and Mx (v, V)/Ma .

5. CONCLUSIONS

A numerical analysis based on FEM rotor dynamics has been developed to determine
a relationship between an asynchronous load on a rotor and its resulting internal forces.
Once the internal forces in a given cross-section of the rotor are measured, this analysis
enables the identification of the external load which can then be used to compute the
internal forces at any desired cross-section. Also, the analysis can be employed to evaluate
effects of dynamic factors on the time-dependent internal forces.

Finally this work certainly warrants further research to develop a more general analysis
in which the shear and Rayleigh effects are taken into consideration.
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